

A timeline assessment of the Resfuels conversion technology portfolio

> Brussels, 21/11/2019 Paraskevi Karka, Ivar Petersson, Stavros Papadokonstantakis, Filip Johnson, Chalmers University of Technology

- Scope of the conversion technologies in ADVANCEFUEL
- The GoBiGas experience
- The ADVANCEFUEL approach(es)
- Conclusions and questions for discussion

(An estimate of) Value of carbon based fuels ("RES-fuels") without net-emissions to the atmosphere Value/willingness to pay for RES-fuels

Berndes, G., Goldmann, M., Johnsson, F., Lindroth, A., Wijkman, A., Abt, B., Bergh, J., Cowie, A., Kalliokoski, T., Kurz, W., Luyssaert, S., Nabuurs, G-J, Forests and the climate - Manage for maximum wood production or leave the forest as a carbon sink?, Kungl. Lantbruks- och skogsakademiens tidskrift, 6, 157, 2018, ISBN 978-91-88567-22-2

The RESfuels conversion technology portfolio in ADVANCFUEL

Renewable resources

ADVANCEFUEL will focus on fuels produced from renewable resources, such as residues from agriculture and forestry, sustainable woody and grassy crops, waste and renewable energy, carbon dioxide and hydrogen.

Conversion processes

ADVANCEFUEL will look at different conversion processes that are already at a high development stage and have been validated in an industrial environment.

Renewable liquid fuels Ultimately, ADVANCEFUEL aims to support

uptake of both advanced biofuels and fuels produced from renewable hydrogen and CO2 in the road, aviation and maritime transport sectors.

~ 10 years,~ 200 man-years of research activity

Larsson, A., Gunnarsson, I., Tengberg, F., The GoBiGas Project – Demonstration of the Production of Biomethane from Biomass via Gasification, Final Report, Göteborg Energi, 2018

The GoBiGas project demonstration plant

Thunman et al., (2018), Energy Science & Engineering

The GoBiGas project economics

TABLE 5 Estimated total production cost (including investment costs) for biomethane, using forest residues for feedstock (170 SEK/MWh based on lower heating value of received fuel with 45% moisture), 8000 FLH, 20-year economic lifetime, and 70% plant efficiency

	Commercial plant 20 MW SEK/ MWh	Commercial plant, 100 MW SEK/ MWh	Commorcial plant, 200 MW SEK/MWh
Capital cost, depreciation	430	199	145
Capital cost, interest (5%)	258	120	87
Development cost	43	20	15
Operation costs (excluding feedstock)	352	166	132
Feedstock cost	217	217	217
Total cost	1300	722	596

Corresponds to around 0.55 €/litre

Thunman et al., (2019), Energy Science & Engineering

The GoBiGas project extension potential

Existing installed capacity of fluidized bed boilers in the Swedish energy system and the corresponding additional boiler sizes needed to realize their conversion to dual fluidized bed gasifiers

Thunman et al., (2018), Energy Science & Engineering

Top-down estimations of production costs for exemplary Resfuels conversion technologies

	E.ON Bio2G	GoBiGas	Chemrec	VTT	Fischer-
	(Möller et al.,	(Thunman et	(IEA, 2013,	(Hannula	Tropsch (FT)
	2013)	al., 2019)	Landälv, 2016)	et al., 2013)	(Landälv,
					2016)
Input type	Lignocellulosic	Lignocellulo-	Black liquor	Lignocellu-	Lignocellulo-
	biomass	sic biomass	from pulp mill	losic bio-	sic biomass
				mass	
Input capacity	325	155	145	335	20-2000
(MW)					
Output type	Methane	Methane	Methanol	Methanol	FT liquids
Output capacity	200	100	100	200	100-300
(MW)					
CAPEX ⁽¹⁾	1850-2050	3100-3260	3400-3500	1700-1750	2000-4000
(€/kW-product)		2240-2400(2)	2800(2)		
Share of CAPEX in	26-38	42-63	45-68	23-34	39-59
production cost ⁽³⁾		31-46(2)	18-27(2)		
(€/MWh-product)					
Share of Biomass OPEX	33	26	29	30	36-50
in production cost ⁽⁴⁾					
(€/MWh-product)					
Share of other OPEX	15-18	17-22	18-24	13-16	19-27
(material and energy	(6-24)	14-18(2)	12-14(2)	(6-21)	(8-36)
utilities, maintenance,		(8-29)	(8-32)		
etc.) in production		(6-24)(2)	(5-18)(2)		
cost ⁽⁵⁾					
(€/MWh-product)					
Total production	73-89	84-111	92-121	66-80	95-136
cost ⁽⁶⁾	(65-95)	70-89(2)	82-105(2)	(59-85)	(84-146)
(€/MWh-product)		(75-118)	(82-129)		
		(62-95) ⁽²⁾	(73-112) ⁽²⁾		

Main conclusions on TRL and costing (from literature references)

- 2nd generation ethanol tehcnologies are more mature as a whole (i.e., TRL>6), but with wide cost ranges (100-230 €/MWh-product)
- Gasification pathways are limited to only a few demonstration plants (73-89 €/MWh-product for methane/methanol/DME, 95-136 €/MWh-product for FT liquids)
- O Pyrolysis pathways are the least mature as a whole (TRL≤6) because of the pyrolysis oil upgrading step (83-102 €/MWh-product for gasoline/diesel but with higher uncertainty than the rest)

Identification of needs for development and innovations

- Identification of factors (technical and economic) dimensions which affect maturity of bio-fuel processes
- Identification of barriers related to each factor which constrain the development of a conversion technology and which must be overcome to increase the TRL status
- Proposal of policy mechanisms (incl. financial instruments) which should be adopted to overcome barriers and facilitate the development of RESfuels technologies

Relating barriers with technical and economic factors

 ✓ Barriers are
 "case specific"
 ✓ Each factor may be related with more than one barriers

 ✓ Each barrier may affect more than one factors

Barriers	Technica	al				Economic							
0	Process	Operat-	Co-lo-	Pro-	Scale-	Market	Capital	Variabil-	Investor	Access	Commer-	End-use	Enviro-
	effi-	ing ca-	cation	cess	up as-	condi-	invest-	ity of	risk pre-	to debt	cially availa-	market de-	eco-
	ciency	pacity		design	pects	tions	ment	produc-	mium	financ-	ble process	velopment	nomic
	11000000	20000000		as-	1.0000000000	2500222	and pro-	tion cost	100 2022	ing	components	(or vehicle	aspects
				pects			duction			- 20	123	engine de-	
a		s		8	·		costs	s)		5	2	velopment)	
Costly auxiliaries or													
not available in com-													
mercial scale (e.g.,													
enzymes, special cat-	+				+		+						
alysts) and trade-off													
among efficiency													
and cost													
High pre-treatment													
costs, high biomass			2				2						
price, and high logis-			- T		ा			- -					
tics costs													
Lack of process inte-													
gration (heat and			+	+					+				
materials, reuse)		84 8		ġ.	8 - X	2		54		6	8 8		
Lack of regulatory													
framework to pro-													
mote greening of			+				+		+				+
fossil-fuel infrastruc-													
tures	-	S S	-	3	2			5		3	2 3	2	
Restricted													
knowledge/experi-													
ence in assembling			+	+	+		+		+		+		
technology compo-											0.25		
nents	-	S 5	-	3	2			5		3	2	2	
Biomass price fluctu-						(Ξ.	1	+				
ations			<u> </u>				<u>.</u>	Ť	· ·				 _
Unknown conditions													
for efficiency related		+			+				+				+
parameters (e.g. en-		· · · · · ·	<u> </u>					·					

Relating policy mechanisms to identified barriers

- **Regulatory framework** (quota obligations, product standards, tax exemption and reduction, targets and qualifying criteria for incentives, feed-in-tariffs, subsidy, green procurement)
- **Financial instruments** (grants, feedstock premium, feed in tariffs, feed in premium, tax incentives, research and innovation funds)
- **Other soft measures** (e.g. best practices, lessons learned, capacity building, raising awareness)

Application to methanol production from biomass gasifiation

Out of the technical factors

- 3 are related with barriers of Moderate (M) significance
- 2 are related with no barriers for the specific pathway (N)

Out of the economic factors

- 4 are related with barriers of Severe (S) significance
- 4 are related with barriers of Moderate (M) significance

Factor	Barrier ((S), (M), (N))	Explication	Policy mechanisms to overcome barriers	Factor	Barrier ((S), (M), (N))	Explication	Policy mechanisms to overcome barriers
Technical				Economic	-		
Process efficiency	N	 Gasification plants can reach theoretical efficiency yields in commercial scale Overall "feedstock to biomethanol" yield comparably 	 Capital investment grants for higher efficiency technologies should focus on: maximum utilisation of by-products (e.g., tars), and reduce CO₂ emissions (e.g., by innovative CCU pathways) 	Uncertain ties of productio n cost	S	 Redundancy that avoids unplanned stops in the production is a must. Timing of the investment, the location of the installation and price of feedstock 	Feedstock premiums towards a common framework in EU countries (a challenging task)
Process design aspects	М	 Innovations in scale-up for: product quality, tar fouling in heat exchangers, syngas cleaning, tar utilisation 	 Regulations and R&D grants 	Commerci ally available process componen ts	м	 Gasifier is the less mature process step Rest of the process components already reached the nth-of-its kind installation Learning will only be related to the assembly of these parts 	Training , capacity building, and certification.

Main conclusions for methanol production ADVANCEFUEL

- The potential for **technical improvements** and innovation potential are rather **limited** in the case of methanol production.
- Technological development of vehicle engines to efficiently use methanol as a drop-in fuel are more important than the innovation of the biomass conversion technologies for this pathway.
- **Cost reductions** can mainly be expected from learning and knowledge sharing in **assembling existing process components.**
- More important are economic factors influenced by market conditions and regulatory frameworks on fuel pricing, CO₂ taxes, blending targets, and creating a more stable investment environment.

Main conclusions for 2nd generation ethanol production via biocheical technologies

- Has reached the **commercialisation stage (Abengoa plant (USA)**, DuPont's plant (USA), Biochemtex plant (Italy), GranBio Bioflex plant (Brazil) etc.)
- Technological **innovations** are expected with respect to the possibilities to utilise the by-products
- Similar barriers and related policy mechanisms to the case of methanol are also applicable here, as far as the **economic factors** are concerned.
- More developed state of end-use market for ethanol as a transportation fuel **Open question:** What is the current market of bio-methanol and bio-ethanol as transportation fuels (EU, USA, World)? How are they (planned to be) promoted (e.g., blending)? What are the technical problems to be solved and the This project has received funding from the European Union's Horizon 2020 research and respective time-horizon in engine development?

Integrating/Greening existing fossil fuel infrastructures

The main integration options maybe direct and indirect.

Direct options:

- Blending of biogenic feedstock with a fossil-Ο based process stream followed by coprocessing in a downstream conventional unit
- Substitution of a conventional part of a liquid fuel production chain by a bio-based one Indirect options:

Indirectly contribute to enable the development of biomass market and infrastructures

- Biomass co-firing in power plants Ο
- Combined heat and power in District Heating 0 networks (DH)

- Biomass-to-liquid fuels (BTL) using Fischer Tropsch
- Biomass use for energy supply in District Heating

The analysis includes

- Process Inventories (Mass & Energy balances)
- Collection of CAPEX data (harmonized in 2018)
- CAPEX decomposition in process components costs (multi-component analysis)
- Characterization of "mature" and "less mature" process components
- The CAPEX reduction accoding to Learning Curve theory requires data collection of :
 - Cumulative installed capacity (CIC)
 - Learning rate per cost component (LR)
 - Cummulative Annual Growth Rate (GAGR)

A single factor model which is commonly expressed as:

 $C(Q_t) = C(Q_0) \cdot \left[\frac{Q_t}{Q_0}\right]^{-b}$ (1)

where Qt is the cumulative production, b is the positive learning parameter, $C(Q_t)$ is the unit cost of production at Q_t , $C(Q_0)$ and Q_0 are respectively the cost and cumulative production at an arbitrary starting point. The associated Learning Rate (LR) is defined as the relative cost reduction in unit production costs for each doubling of cumulative production: $LR = 1 - 2^{-b}$

Expansions of this approach to include learning by research and cumulative R&D investment

$$\log C = \alpha + b_{lbd}(\log (Q_t/Q_0) + b_{lbt}(\log R))$$
(2)
and **multi-component learning** (applied in this project):
$$C(Q_t) = \sum C(Q_{0i}) \cdot [\frac{Q_t}{Q_0}]^{-b(i)} \neq C_{01}[\frac{Q_{t1}}{Q_{01}}]^{-b(1)} + C_{02}[\frac{Q_{t2}}{Q_{02}}]^{-b(2)} + \dots + C_{0n}[\frac{Q_{tn}}{Q_{0n}}]^{-b(n)}$$
(3)

Process pathways under investigation

Completed

- Methanol (syngas pathway)
- DME (syngas pathway)
- LNG from indirect gasification
- Ethanol from biochemical pathway
- o Ethanol to Jet Fuels
- FT liquids

In progress

- Pyrolysis
- Butanol from biochemical pathway
- Syngas to ethanol

Next Steps

 \circ Electrification paths (Renewable H₂)

Application example for the FT synthesis based on indirect gasification

- More than one references for each case study leading to respective Inventory Tables and LC estimations
- Comparison of CAPEX data and effort for harmonization of data in terms of
 - Cost component diffrences
 - Monetary
 - Reference Year estimations

Name Technology:	Biomass to FT Diesel through In Biomass is dried and gasified and the syngas indirectly heated gasifier. Steam extracted fro gasifier. The indirectly-heated gasification rea tar and steam reforming (where some water qu	direct Gasi is conditioned p m the steam cycl ctor is operated as shift also occ	Fication rior to steam (le is sent to the at 1598'F (87 yrs) yields syn	reforming. The i e gasifier at a flo 0°C) and 23 psi thesis gas with	ndirectly heat ow rate of 0.4 a. Heat is sup excess H2 for	ed gasifi Ib of st plied by hydrocr
Short description:	and reformed synthesis gas is passed through	a membrane filt	er to adjust th	e H2 to CO ratio	o before it is a	ent to t
Input-output ratios		Unit	2018	Unit	2018	
input-output ratios	Lignocellulosic biomass (wood chips)	dru toppes/d	2000	Unix	2010	
Innuts	Power consumption	MM	24.6			
	Total water demand	m3/h	204.6			
	Diecel	m3/h	115			
	Nanhtha	m3/h	2.94			
Outputs	Power Generation (Gross)	MM	46.9			
	Wastewater	m3/h	121 7			
	å ch	kalb	2590			
Efficiency	biomass to fuels	¥1.%	2000			
Cost	Unit	2019	2020	2020	2050	
CAPEY total	641 2010	2010	2020	256.47	210 72	
	MI_2010	233.30	204.00	206.47	210.73	
Food prop and druing	MI_2010	0 00	0 62	7.91	0 00 0	
Cacification with tarreforming and	MI_2010	12.02	0.00	10.95	0.00	
Cusase elesson & steam reforming and	MI_2010	20.01	10.00	10.35	3.6r	
Signas cleanup & stearn reforming	MI_2010	12.00	10.00	10.47	0.41	
Historer-Tropson Synthesis	MI_2010	15.30	15.10	14.06	12.09	
Steam system and newsr generati	MI_2010	0.14	0.16	7.50	6.50	
Remainder off-site battery limits ((M[_2018	1.66	1.60	1.48	1.28	
OPEX						
U. LII	Euro 2018/gal diesel	3.39	MESP			
	Euro 2018/gal diesel	2.25	No depreci-	ation, tax, ROI	, co-produc	t credit
Other parameters		Unit				
Tupical full load hours	7884	hrstur	From source	e ístream fao	tor 90%)	
Technical lifetime	20	yr	From source			
TRL						
Source	Pacific Northwest National La	boratory				
	Techno-economic Analysis for the Thermochemical Conversion of Biomass to 2011					

CAPEX decomposition and learning parameters for the FT synthesis case

CAPITAL COSTS	Purchase Cost	Installed Cost
	(MEuro 2018)	(Meuro 2018)
Air separation unit	0.0	0.0
Feed prep and drying	8.9	33.0
Gasification with tar reforming		
and heat recovery	12.0	44.7
Syngas cleanup & steam		
reforming	20.8	77.4
Fischer-Tropsch Synthesis	12.9	48.0
Hydrocracking & Product		
Separation	15.7	58.6
Steam system and power		
generation	8.5	31.5
Remainder off-site battery		
limits (OSBL)	1.7	6.2
Total CAPEX	80.5	299.3

Input data for LC model

Technology	Value	Range	Region
Learning rate (LR)			
Syngas	0.15	0.05	Sweden (2010-
FT synthesis plant	0.05	0.02	Global
Cumulative installed			
capacity (CIC)			
Syngas	20	MW	Sweden (2010-
FT synthesis plant	40,000	MW*	Global
Cumulative annual			
growth rate (CAGR)			
Syngas	0.11	0.03	Global
FT synthesis plant	0.13 **	0.05	Global

• Detz et al., 2018, The future of solar fuels: when could they become competitive

** https://www.globenewswire.com/news-

release/2019/03/25/1760424/0/en/Global-Syngas-Market-Growth-Trendsand-Forecast-to-2024-Market-is-Expected-to-Grow-at-a-CAGR-of-11-02.html

CAPEX reduction ranges over an implementation timeline (2018-2050)

CAPEX reduction (2050)

- 30% for reference scenario
- 14% for conservative scenario
- 43% for optimistic scenario

- Reference scenario for methanol gives 16% and 33% reduction for 2030 and 2050 respectively.
- Experience from a 20 MW gasifier project shows that the major cost reductions which can be expected lie not in the capital cost but in assembling of the plants.

Open question:

What are the exogenous (market for vehicles, etc.) factors which may affect LR relevant cost reductions in 2030 & 2050?

Summary of conclusions for Resfuels

- Must be implemented at a **large industrial scale** if to be able to **bring down cost** to reasonable levels, since then already commercially available technology at mature levels can be used for most of the process steps
- High capital cost = **high financial risk**
- Limited technical learning with respect to investment cost can be expected
 - To ensure high full-load hours important require experience
 - Major **reductions investment costs** which can be expected lie not in the capital cost but in **"assembling" of plants**
- **Feedstock cost** is a large share of total production cost important implications on policy measures
 - Increased use of biomass in several sectors will drive up biomass prices
 - The cost to use fossil fuels must be higher than the cost to use biofuels
- Increasing debate over biomass/forests and climate important with criteria for sustainable biomass – implications on financial risk

Thank you for your attention

Brussels, 21/05/2019 Stavros Papadokonstantakis, Paraskevi Karka, Filip Johnson Chalmers University of Technology

26